Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity
نویسندگان
چکیده
The nonlinear dynamical behavior of a micromechanical resonator acting as one of the mirrors in an optical resonance cavity is investigated. The mechanical motion is coupled to the optical power circulating inside the cavity both directly through the radiation pressure and indirectly through heating that gives rise to a frequency shift in the mechanical resonance and to thermal deformation. The energy stored in the optical cavity is assumed to follow the mirror displacement without any lag. In contrast, a finite thermal relaxation rate introduces retardation effects into the mechanical equation of motion through temperature dependent terms. Using a combined harmonic balance and averaging technique, slow envelope evolution equations are derived. In the limit of small mechanical vibrations, the micromechanical system can be described as a nonlinear Duffing-like oscillator. Coupling to the optical cavity is shown to introduce corrections to the linear dissipation, the nonlinear dissipation and the nonlinear elastic constants of the micromechanical mirror. The magnitude and the sign of these corrections depend on the exact position of the mirror and on the optical power incident on the cavity. In particular, the effective linear dissipation can become negative, causing self-excited mechanical oscillations to occur as a result of either a subcritical or S. Zaitsev ( ) · O. Gottlieb · E. Buks Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa, Israel 32000 e-mail: [email protected] supercritical Hopf bifurcation. The full slow envelope evolution equations are used to derive the amplitudes and the corresponding oscillation frequencies of different limit cycles, and the bifurcation behavior is analyzed in detail. Finally, the theoretical results are compared to numerical simulations using realistic values of various physical parameters, showing a very good correspondence.
منابع مشابه
Theoretical comparison analysis of long and short external cavity semiconductor laser
In this paper, considering optical feedback as an optical injection, and taking in to account round-trip time role in the external cavity, a standard small signal analysis is applied on laser rate equations. By considering the relaxation oscillation (f2) and external cavity frequencies (f) ratio for semiconductor laser, field amplitude response gain, optical phase and carrier number for long ex...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملThe effect of cells' radius on optical filter output spectrum based on photonic crystals
In this article, the effect of cells' radius on the behavior of wavelength switching optical filter andthe effect of the radius of the optical filters' key characteristics such as wavelength resonance onan optical filter based on photonic crystals, have been investigated. Currently, the most commonapplied mechanism for designing optical filter based on photonic crystals is using twomechanisms s...
متن کاملHamiltonian chaos in a coupled BEC–optomechanical-cavity system
We present a theoretical study of a hybrid optomechanical system consisting of a Bose-Einstein condensate (BEC) trapped inside a single-mode optical cavity with a moving end mirror. The intracavity light field has a dual role: it excites a momentum side mode of the condensate, and acts as a nonlinear spring that couples the vibrating mirror to that collective density excitation. We present the ...
متن کاملRay splitting in paraxial optical cavities.
We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray-splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012